The true crabs, the Brachyura, are generally divided into two major groups: Eubrachyura or 'advanced' crabs, and Podotremata or 'primitive' crabs. The status of Podotremata is one of the most controversial issues in brachyuran systematics. The podotreme crabs, best recognised by the possession of gonopores on the coxae of the pereopods, have variously been regarded as mono-, para- or polyphyletic, or even as non-brachyuran. For the first time, the phylogenetic positions of the podotreme crabs were studied by cladistic analysis of small subunit nuclear ribosomal RNA sequences. Eight of 10 podotreme families were represented along with representatives of 17 eubrachyuran families. Under both maximum parsimony and Bayesian Inference, Podotremata was found to be significantly paraphyletic, comprising three major clades: Dromiacea, Raninoida, and Cyclodorippoida. The most 'basal' is Dromiacea, followed by Raninoida and Cylodorippoida. Notably, Cyclodorippoida was identified as the sister group of the Eubrachyura. Previous hypotheses that the dromiid crab, Hypoconcha, is an anomuran were unsupported, though Dromiidae as presently composed could be paraphyletic. Topologies constrained for podotreme monophyly were found to be significantly worse (P < 0.04) than unconstrained topologies under Templeton and S-H tests. The clear pattern of podotreme paraphyly and robustness of topologies recovered indicates that Podotremata as a formal concept is untenable. Relationships among the eubrachyurans were generally equivocal, though results indicate the majoids or dorippoids were the least derived of the Eubrachyura. A new high level classification of the Brachyura is proposed.

Keywords: Brachyura; Podotremata; Dromiacea; Raninoida; Cyclodorippoida; Decapoda; Crustacea; 18S; Phylogeny

Decapoda, complete paper

Bibliographic Data

Phylogenetics of the brachyuran crabs (Crustacea: Decapoda): The status of Podotremata based on small subunit nuclear ribosomal RNA
Ahyong, S.T; Lai, J.C.Y; Sharkey, D; Colgan, D.J; Ng, P.K.L.
Publication Type
Refereed Article
Molecular Phylogenetics and Evolution
Number of pages
576 – 586
Full Text
Decapoda, complete paper