Molecular phylogeography of the fruit bat genus Melonycteris in northern Melanesia
Contents
Abstract
Aim: To investigate patterns of genetic divergence between populations of the fruit bat genus Melonycteris Dobson 1877 in relation to the possible effects on dispersal of the geological history of water barriers within and between northern Melanesian archipelagos.
Location: The genus is found only in the Bismarck Archipelago and Solomon Islands of northern Melanesia. Methods Up to 935 aligned bases of cytochrome b and cytochrome c oxidase subunit I DNA sequences were determined for specimens of most species and subspecies of Melonycteris. Measures of genetic distance, analysis of molecular variation and phylogenetic investigations (using maximum parsimony, maximum likelihood and Bayesian approaches) were conducted to assess the evolutionary relationships amongst populations.
Results: The deepest divergences within Melonycteris separate the genus into two reciprocally monophyletic clades from first, the Bismarck Archipelago, and secondly, the Solomon Islands. Within the Solomon Islands, five major clades received strong support. Listed in a generally north-western to south-eastern direction these were: (1) specimens from Choiseul and Santa Isabel; (2) specimens from New Georgia and Kolombangara; (3) specimens from Malaita; (4) specimens from Guadalcanal; and (5) specimens from Makira. Outgroup rooting suggested that the clade from Makira was the most basal within the Solomon Islands, being shown as the sister group to all other Melonycteris from this archipelago.
Main conclusions: Patterns of genetic variation within Melonycteris were generally consistent, given current knowledge of northern Melanesian geological history, with the hypothesis that the dispersal of these fruit bats is strongly inhibited by water barriers. Within the Solomon Islands the main genetic clades were each restricted to a single island or to a group of islands that are thought to have belonged to larger landmasses (Greater Gatumbangara and Greater Bukida) formed by land bridges during the Pleistocene. The high genetic distance between specimens from the Bismarck Archipelago and from the Solomon Islands reflects the persistently large geographic distance between these archipelagos. The unexpected phylogenetic position of the Makira specimens suggests either that this island was the first colonized by Melonycteris in the Solomon Islands or that this population is the relict of a clade that was previously more widely distributed.
Keywords: Bismarck Archipelago, cytochrome c oxidase, cytochrome b, island biogeography, Megachiroptera, Melonycteris, Solomon Islands, water barriers